Introduction to Neurobiology of Disease

Pedro Gonzalez-Alegre, MD
Assistant Professor, Department of Neurology
Graduate Programs in Genetics, Neuroscience, Molecular & Cellular Biology
Carver College of Medicine, The University of Iowa

Outline
1. Introduction:
 1. Neurological diseases:
 1. Epidemiology.
 2. Approach to the neurological patient.
 2. Biological basis of neurological diseases:
 1. A growing field.
 2. Recent advances.
2. Neurobiology of Disease at UI.
3. Why this course?

DALY = YLL + YLD.
DALY: disability-adjusted life years.
YLL: years of life lost because of premature mortality.
YLD: years of healthy life lost as a result of disability.

Source: World Health Organization

Neurological Disease on the Global Agenda

Source: World Health Organization
Outline

1. Introduction:
 1. Neurological diseases:
 1. Epidemiology.
 2. Approach to the neurological patient.
 2. Biological basis of neurological diseases:
 1. A growing field.
 2. Recent advances.
 2. Neurobiology of Disease at UI.
 3. Why this course?

Neurology

- Approaching the neurological patient:
 - History and physical.
 - Testing (structure, function)
- What is the neurologist trying to answer?
 - Where is the lesion?
 - What is the lesion?
 - Why did it happen?

Structural studies

- Pathology (biopsy/autopsy)
- Computerized tomography (CT)
- Magnetic Resonance Imaging (MRI)
 - MR Spectroscopy.
 - Diffusion tensor imaging (DTI).

Pathology

CT/MRI
Functional studies

- Electrophysiology:
 - EMG/NCS.
 - EEG.
 - Evoked potentials.
- Functional imaging:
 - fMRI.
 - PET/SPECT.
- Neuropsychology

Outline

1. Introduction:
 1. Neurological diseases:
 1. Epidemiology.
 2. Approach to the neurological patient.
 2. Biological basis of neurological diseases:
 1. A growing field.
 2. Recent advances.
2. Neurobiology of Disease at UI.
3. Why this course?
Outline

1. Introduction:
 1. Neurological diseases:
 1. Epidemiology.
 2. Approach to the neurological patient.
 2. Biological basis of neurological diseases:
 1. A growing field.
 2. Recent advances.
 2. Neurobiology of Disease at UI.
 3. Why this course?

Recent advances

1. Animal models of neurological disease.
2. Protein quality control.
3. Advances in genetics—are they paying off?
4. RNA interference.
5. Cellular and molecular therapies.

Animal models

- Species: rodents, primates, worms, fish, flies...
- Generation:
 - Genetic models: transgenesis, gene targeting, conditional.
 - Environmental models.

Recent advances

1. Animal models of neurological disease.
2. Protein quality control.
3. Advances in genetics—are they paying off?
4. RNA interference.
5. Cellular and molecular therapies.

Animal models

- Express a transgene (foreign gene):
 - Conventional transgenesis.
 - Viral-mediated gene transfer.
 - Inducible systems.
 - YAC/BAC transgenics.
- Targeting of endogenous genes:
 - Knock out.
 - Knock down.
 - Knock in.
 - Conditional.
Recent advances

1. Animal models of neurological disease.
2. Protein quality control.
3. Advances in genetics—are they paying off?
4. RNA interference.
5. Cellular and molecular therapies.

Consequences

- Identification of many disease-linked genes.
- Redefinition of disease phenotypes.
- Pharmacogenomics.
Recent advances

1. Animal models of neurological disease.
2. Protein quality control.
3. Advances in genetics—are they paying off?
4. RNA interference.
5. Cellular and molecular therapies.

RNAi in neuroscience

1. Experimental tool to study neurological disease.
2. Role of endogenous RNAi (microRNA pathway) in neurological disease.
3. Therapeutic RNAi for neurological diseases.
Recent advances

1. Animal models of neurological disease.
2. Protein quality control.
3. Advances in genetics—are they paying off?
4. RNA interference.
5. Cellular and molecular therapies.
Molecular therapies

- Gene replacement.
- Gene silencing (RNAi).

Outline

1. Introduction:
 1. Neurological diseases:
 1. Epidemiology.
 2. Approach to the neurological patient.
 2. Biological basis of neurological diseases:
 1. Recent advances.
 2. Neurobiology of Disease at UI.
 3. Why this course?
Patient care

Education

Research

Patient care

Education

Research

Outline

1. Introduction:
 1. Neurological diseases:
 1. Epidemiology.
 2. Approach to the neurological patient.
 2. Biological basis of neurological diseases:
 1. Recent advances.
 2. Neurobiology of Disease at UI.
 3. Why this course?

 Diseases of the nervous system pose a significant public health and economic challenge, affecting nearly 1 in 3 Americans at some point in their life, with a cost exceeding $500 billion per year.

 The NIH Blueprint for Neuroscience Research is a collaborative and coordinated effort across 15 Institutes and Centers that supports research on the nervous system to accelerate the pace of discovery in neuroscience research.
• Goal: to translate this new understanding into clinical interventions that will reduce the public health burden of nervous system disorders and help to maintain a healthy nervous system throughout life.

• Translating basic scientific discoveries into clinical benefits would be significantly enhanced if bench scientists were both informed about the biology and clinical presentation/course of neurological diseases and engaged in addressing these challenges through their research.

• Integrating courses on the neurobiology of disease into basic neuroscience training programs throughout the nation would help to forge important links between basic and clinical science.

“Translational Research”

GOAL

Graduate Students

Research proposal and exams

• Effort:
 – 10% class participation.
 – 40% research proposal.
 – 25% midterm exam.
 – 25% final exam.

Research proposal

• Successful scientists write great grants.
• Writing a great grant takes practice.
• Great grant: A clear, compelling description of a logical set of experiments that test a biologically significant hypothesis.
Grant greatness

• “Clear, compelling description”
 – More is not always better (“If I had more time I would write a shorter letter” - Cicero)
• “Logical set of experiments”
 – The right methods to test your hypothesis(es) should lead to easily interpretable results
 – Expected outcomes aren’t the only possible outcomes
• “Biologically significant hypothesis”
 – Convincing the reader that the problem is important and that you are taking the right approach is more than half the battle

Proposal guidelines

• Proposal should address an important question regarding the neurobiology of a particular disorder or group of disorders
• Cannot be on your own research or that of your laboratory
• Cannot be a research project you worked on in a rotation laboratory, though it can be informed by a prior rotation
• Ideally centered on a disease discussed in course, though exceptions can be made with permission

Proposal guidelines (II)

• 10 page maximum length, single space text.
• Clearly stated, central hypothesis.
• Research described in 1-3 aims (2)
• Components:
 – Page 1: Abstract (200 words or less)
 – Page 2: Aims page (one page max)
 – Background/significance (2-3 pages)
 – Research design and methods (5-6 pages)

Research design and methods

• Typically organized into specific aims, with each aim testing a specific hypothesis.
• Organization of each aim:
 - Rationale for the experiments and chosen methodology.
 - Experimental design: with sufficient detail to show command of techniques.
 - Expected and alternative outcomes/potential problems.

Sites for grant writing help

NINDS website for grant writing:
http://www.ninds.nih.gov/funding/write_grant_doc.htm

All About Grants Tutorial:
http://www.niaid.nih.gov/ncn/grants/

Exams

• Dates and material:
 - Midterm: October 16th.
 - Final: December 16th.
• Primarily short answer questions.
• Will encompass course topics, including review articles provided.
• Systems, genetic, molecular, pathological and clinical elements all will be addressed in questions
• Focus will be on concepts and pathomechanisms rather than on details of disease