Bernd Fritzsch, Ph.D.

Bernd Fritzsch, PhD
Professor and DEO
Biology
Research focus: 

Ear and hair cell development, regeneration, and evolution

Office

319-353-2969
143 BB

Lab

331 BB
319-335-1089

1. Molecular Basis of Ear Development
Research on the molecular basis of ear development analysis, various mutations (knockouts, knockins, transgenic misexpression) of transcription factors (bHLH, Lim homeodomain, GATA, Pax, Eya), or diffusible factors (Fgfs, Wnts, Erbs). This mutational analysis provides in vivo data that help resolve, in collaboration with other laboratories nationally and internationally, the molecular interactions of normal ear development as well as aberrant development underlying congenital ear defects. Superimposed on this proximate analysis is the ultimate question: resolving evolution of the mammalian ear as a transformation of embryonic developmental programs to generate an improved system for sound perception.

2. Molecular Basis of Inner Ear Efferent and Brainstem Motoneuron Formation
The research on brainstem motoneurons is aimed to understand the evolution of novel motor outputs of the brainstem such as the evolution and development of eye muscles and their innervation and the evolution and development of the inner ear efferent system that modifies neurosensory information acquisition in the ear. These novelties are embedded in a fairly rigid framework of rhombomeric hindbrain development governed by the highly conserved homeobox genes as well as other transcription factors.

3. Molecular Basis of Hair Cell Proliferation, Maintenance, and Regeneration
Research on hair cell development and regeneration can be formally divided into two aspects: molecular basis of proliferation regulation and molecular basis of maintenance and differentiation of hair cells.

4. Improving Multicolor Dye Tracing Techniques
Research on improvement of lipophilic dyes as well as other tracing techniques is focusing on multicolor labeling techniques in combination with in situ and immunocytochemical analyses to maximize data collection from single mutations for optimized high-throughput phenotypic characterization of mutants. Current work focuses on the various aspects of carbocyanine dyes with the ultimate goal in mind to generate multiple (up to eight) dyes that allow independent labeling of various neuronal populations to investigate simultaneously the interactions of multiple neuronal processes to develop synaptic connections.

Apply Now

Learn from
top-notch researchers
at the University of Iowa